Many driver mutations in cancer are specific in that they occur at significantly higher rates than presumably functionally alternative mutations. For example, V600E in the BRAF hydrophobic activation segment (AS) pocket accounts for >95% of all kinase mutations. While many hypotheses tried to explain such significant mutation patterns, conclusive explanations are lacking. Here, we use experimental and in silico structure-energy statistical analyses, to elucidate why the V600E mutation, but no other mutation at this, or any other positions in BRAF's hydrophobic pocket, is predominant. We find that BRAF mutation frequencies depend on the equilibrium between the destabilization of the hydrophobic pocket, the overall folding energy, the activation of the kinase and the number of bases required to change the corresponding amino acid. Using a random forest classifier, we quantitatively dissected the parameters contributing to BRAF AS cancer frequencies. These findings can be applied to genome-wide association studies and prediction models.

The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF

Kiel, Christina;
2016-01-01

Abstract

Many driver mutations in cancer are specific in that they occur at significantly higher rates than presumably functionally alternative mutations. For example, V600E in the BRAF hydrophobic activation segment (AS) pocket accounts for >95% of all kinase mutations. While many hypotheses tried to explain such significant mutation patterns, conclusive explanations are lacking. Here, we use experimental and in silico structure-energy statistical analyses, to elucidate why the V600E mutation, but no other mutation at this, or any other positions in BRAF's hydrophobic pocket, is predominant. We find that BRAF mutation frequencies depend on the equilibrium between the destabilization of the hydrophobic pocket, the overall folding energy, the activation of the kinase and the number of bases required to change the corresponding amino acid. Using a random forest classifier, we quantitatively dissected the parameters contributing to BRAF AS cancer frequencies. These findings can be applied to genome-wide association studies and prediction models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1469178
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact