Large-scale linguistic data is nowadays available in abundance. Using this source of data, previous research has identified redundancies between the statistical structure of natural language and properties of the (physical) world we live in. For example, it has been shown that we can gauge city sizes by analyzing their respective word frequencies in corpora. However, since natural language is always produced by human speakers, we point out that such redundancies can only come about indirectly and should necessarily be restricted cases where human representations largely retain characteristics of the physical world. To demonstrate this, we examine the statistical occurrence of words referring to body parts in very different languages, covering nearly 4 billions of native speakers. This is because the convergence between language and physical properties of the stimuli clearly breaks down for the human body (i.e., more relevant and functional body parts are not necessarily larger in size). Our findings indicate that the human body as extracted from language does not retain its actual physical proportions; instead, it resembles the distorted human-like figure known as the sensory homunculus, whose form depicts the amount of cortical area dedicated to sensorimotor functions of each body part (and, thus, their relative functional relevance). This demonstrates that the surface-level statistical structure of language opens a window into how humans represent the world they live in, rather than into the world itself.
Language statistics as a window into mental representations
Rinaldi, Luca
2022-01-01
Abstract
Large-scale linguistic data is nowadays available in abundance. Using this source of data, previous research has identified redundancies between the statistical structure of natural language and properties of the (physical) world we live in. For example, it has been shown that we can gauge city sizes by analyzing their respective word frequencies in corpora. However, since natural language is always produced by human speakers, we point out that such redundancies can only come about indirectly and should necessarily be restricted cases where human representations largely retain characteristics of the physical world. To demonstrate this, we examine the statistical occurrence of words referring to body parts in very different languages, covering nearly 4 billions of native speakers. This is because the convergence between language and physical properties of the stimuli clearly breaks down for the human body (i.e., more relevant and functional body parts are not necessarily larger in size). Our findings indicate that the human body as extracted from language does not retain its actual physical proportions; instead, it resembles the distorted human-like figure known as the sensory homunculus, whose form depicts the amount of cortical area dedicated to sensorimotor functions of each body part (and, thus, their relative functional relevance). This demonstrates that the surface-level statistical structure of language opens a window into how humans represent the world they live in, rather than into the world itself.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.