Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010-2012) and Run 2 (2015-2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.

Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents

Farina, E. M.;Introzzi, G.;Livan, M.;Negri, A.;Pezzotti, L.;Rebuzzi, D. M.;Rimoldi, A.;Sottocornola, S.;
2021-01-01

Abstract

Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010-2012) and Run 2 (2015-2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.
2021
The Physics category includes resources of a broad, general nature that contain materials from all areas of physics, The category also includes resources specifically concerned with the following physics sub-fields: mathematical physics, particle and nuclear physics, physics of fluids and plasmas, quantum physics, and theoretical physics.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
16
08
P08025
31
High energy physics, Particle physics, Particle detectors
2842
info:eu-repo/semantics/article
262
Aad, G.; Abbott, B.; Abbott, D. C.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D. K.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Ab...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1470934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact