The objective of this thesis concerns the development of AI solutions, designed to identify specific postures assumed by a frail subject within a home environment, in everyday life situations. The identified posture constitutes one of the inputs to a more complex system that receives, in addition, raw or processed data from a network of environmental sensors located in the room of interest. The system is tasked with integrating and analyzing the different inputs in order to distinguish an everyday life scenario from a potentially dangerous situation (e.g., person lying in bed probable everyday life situation; person lying on the floor potentially dangerous situation). The input data to the AI model were acquired from Vision-based sensors, i.e., four Kinect V2 devices, arranged in the environment according to a geometry allowing to monitor a sufficiently large area of the room. The pre-processing of the data, as well as the construction of the analysis databases, were implemented in the Matlab environment, while the proposed architectures, as well as their validation, were carried out in the Phyton language. The thesis was organized as follows: in Chapter 1, a brief overview of AAL is provided based on a general introduction, a description of its purpose and its development in recent years. The chapter closes with an example of a possible Smart Home; in Chapter 2, a general description of HAR was given, illustrating the process leading from acquired data to the identification of a human action. The different types of sensors, techniques for analyzing the acquired data with a focus on defining features of interest, and dataset construction were explained. Finally, special attention has been paid to the description of the different AI algorithms usually proposed in HAR solutions; Chapter 3 presents the thesis work regarding the experimental set-up in terms of instrumentation used, acquisition protocol for experimental testing, data pre-processing and dataset construction; Chapter 4 presents an excursus of the different algorithms and the different network architectures proposed, reporting for each the results obtained and a brief discussion aimed at analyzing the performance of the classifier, the critical issues that emerged and the possible actions to be taken. The proposed architectures go from an initial Multi-Layer Perceptron (MLP) type neural network, later accompanied by a pre-processing algorithm of the acquired data, to recurrent neural network models such as Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). The thesis ends with conclusions about the entire thesis activity and possible future developments.
L’obiettivo di questa tesi riguarda, lo sviluppo di soluzioni di IA, atte ad identificare specifiche posture assunte da un soggetto fragile all’interno di un ambiente domestico, in situazioni di vita quotidiana. La postura identificata costituisce uno degli ingressi ad un sistema più complesso che riceve, in aggiunta, i dati grezzi o elaborati provenienti da una rete di sensori ambientali dislocati nella stanza di interesse. Il sistema ha il compito di integrare ed analizzare i diversi ingressi al fine di distinguere uno scenario di vita quotidiana da una potenziale situazione di pericolo (ad esempio, persona sdraiata a lettoprobabile situazione di vita quotidiana; persona sdraiata a terrapotenziale situazione di pericolo). I dati di ingresso al modello di IA sono stati acquisiti da sensori di tipo Vision-based, ovvero quattro dispositivi Kinect V2, disposti nell’ambiente, secondo una geometria che consenta di monitorare un’area sufficiente ampia del locale. La preelaborazione dei dati così, come la costruzione dei database di analisi, sono stati implementati nell’ambiente Matlab, mentre le architetture proposte, così come la loro validazione, sono state realizzate in linguaggio Phyton. La tesi è stata così organizzata: nel Capitolo 1 è fornita una breve panoramica sull’AAL basata su un’introduzione generale, una descrizione delle finalità e del suo sviluppo negli ultimi anni. Il capitolo si chiude con un esempio di possibile Smart Home; nel Capitolo 2, si è descritto in generale il concetto di HAR, illustrando il processo che porta dal dato acquisito alla identificazione di un’azione umana. Sono state illustrate le diverse tipologie di sensori, le tecniche di analisi dei dati acquisiti con particolare attenzione alla definizione delle feature di interesse e la costruzione del dataset. Infine, particolare attenzione è stata posta alla descrizione dei diversi algoritmi di IA solitamente proposti nelle soluzioni di HAR; nel Capitolo 3 viene presentato il lavoro di tesi riguardante la parte di set-up sperimentale in termini di strumentazione utilizzata, protocollo di acquisizione delle prove sperimentali, preelaborazione dei dati e costruzione del dataset; nel Capitolo 4 viene presentato un excursus dei diversi algoritmi e le diverse architetture di rete proposte, riportando per ciascuna i risultati ottenuti ed una breve discussione volta ad analizzare le prestazioni del classificatore, le criticità emerse e le possibili azioni da intraprendere. Le architetture proposte passano da una prima rete neurale di tipo Multi-Layer Perceptron (MLP) accompagnata successivamente da un algoritmo di preprocessing dei dati acquisiti, a modelli di rei neurali ricorrenti quali Long-Short Term Memory (LSTM) e Gated Recurrent Unit (GRU). L’elaborato termina con le conclusioni sull’intera attività di tesi e i possibili sviluppi futuri.
Soluzioni di Intelligenza Artificiale per il riconoscimento di posture in sistemi di Ambient Assisted Living
GUERRA, BRUNA MARIA VITTORIA
2023-02-28
Abstract
The objective of this thesis concerns the development of AI solutions, designed to identify specific postures assumed by a frail subject within a home environment, in everyday life situations. The identified posture constitutes one of the inputs to a more complex system that receives, in addition, raw or processed data from a network of environmental sensors located in the room of interest. The system is tasked with integrating and analyzing the different inputs in order to distinguish an everyday life scenario from a potentially dangerous situation (e.g., person lying in bed probable everyday life situation; person lying on the floor potentially dangerous situation). The input data to the AI model were acquired from Vision-based sensors, i.e., four Kinect V2 devices, arranged in the environment according to a geometry allowing to monitor a sufficiently large area of the room. The pre-processing of the data, as well as the construction of the analysis databases, were implemented in the Matlab environment, while the proposed architectures, as well as their validation, were carried out in the Phyton language. The thesis was organized as follows: in Chapter 1, a brief overview of AAL is provided based on a general introduction, a description of its purpose and its development in recent years. The chapter closes with an example of a possible Smart Home; in Chapter 2, a general description of HAR was given, illustrating the process leading from acquired data to the identification of a human action. The different types of sensors, techniques for analyzing the acquired data with a focus on defining features of interest, and dataset construction were explained. Finally, special attention has been paid to the description of the different AI algorithms usually proposed in HAR solutions; Chapter 3 presents the thesis work regarding the experimental set-up in terms of instrumentation used, acquisition protocol for experimental testing, data pre-processing and dataset construction; Chapter 4 presents an excursus of the different algorithms and the different network architectures proposed, reporting for each the results obtained and a brief discussion aimed at analyzing the performance of the classifier, the critical issues that emerged and the possible actions to be taken. The proposed architectures go from an initial Multi-Layer Perceptron (MLP) type neural network, later accompanied by a pre-processing algorithm of the acquired data, to recurrent neural network models such as Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). The thesis ends with conclusions about the entire thesis activity and possible future developments.File | Dimensione | Formato | |
---|---|---|---|
Guerra Bruna Maria Vittoria PhD Thesis.pdf
Open Access dal 03/07/2023
Descrizione: Tesi di Dottorato di Guerra Bruna Maria Vittoria
Tipologia:
Tesi di dottorato
Dimensione
6.11 MB
Formato
Adobe PDF
|
6.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.