Omalizumab is an anti-IgE humanized monoclonal antibody approved for the treatment of severe asthma and chronic spontaneous urticaria. Omalizumab binds free serum IgE and antagonizes its interaction with FcεRI, which is considered the main pharmacodynamic mechanism responsible for the clinical response to the treatment. The reduction of IgE serum concentration down-regulates the cellular expression of FcεRI on basophils. However, the biological events occurring on basophils during the therapy with omalizumab are multiple and complex. Here we review the current evidence regarding the specific biological effects of omalizumab on basophils in patients with asthma and chronic spontaneous urticaria. In addition to the modulation of IgE receptors, omalizumab may affect basophils homeostasis, intra-cellular signaling, cellular responsiveness/activation and cytokine release. These effects may be partially responsible for the clinical success of omalizumab and potentially provide useful biological markers for future assessment of the clinical response to the treatment. However, further investigation is required to better elucidate the role of basophils during the treatment with omalizumab.
Effects of omalizumab on basophils: Potential biomarkers in asthma and chronic spontaneous urticaria
Poddighe D.;Vangelista L.
2020-01-01
Abstract
Omalizumab is an anti-IgE humanized monoclonal antibody approved for the treatment of severe asthma and chronic spontaneous urticaria. Omalizumab binds free serum IgE and antagonizes its interaction with FcεRI, which is considered the main pharmacodynamic mechanism responsible for the clinical response to the treatment. The reduction of IgE serum concentration down-regulates the cellular expression of FcεRI on basophils. However, the biological events occurring on basophils during the therapy with omalizumab are multiple and complex. Here we review the current evidence regarding the specific biological effects of omalizumab on basophils in patients with asthma and chronic spontaneous urticaria. In addition to the modulation of IgE receptors, omalizumab may affect basophils homeostasis, intra-cellular signaling, cellular responsiveness/activation and cytokine release. These effects may be partially responsible for the clinical success of omalizumab and potentially provide useful biological markers for future assessment of the clinical response to the treatment. However, further investigation is required to better elucidate the role of basophils during the treatment with omalizumab.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.