In this paper, we introduce the p-Fourier Discrepancy Functions, a new family of metrics for comparing discrete probability measures, inspired by the χr-metrics. Unlike the χr-metrics, the p-Fourier Discrepancies are well-defined for any pair of measures. We prove that the p-Fourier Discrepancies are convex, twice differentiable, and that their gradient has an explicit formula. Moreover, we study the lower and upper tight bounds for the p-Fourier Discrepancies in terms of the Total Variation distance.

The Fourier Discrepancy Function

Auricchio, Gennaro
Membro del Collaboration Group
;
Codegoni, Andrea
Membro del Collaboration Group
;
Gualandi, Stefano
Membro del Collaboration Group
;
Zambon, Lorenzo
Membro del Collaboration Group
2023-01-01

Abstract

In this paper, we introduce the p-Fourier Discrepancy Functions, a new family of metrics for comparing discrete probability measures, inspired by the χr-metrics. Unlike the χr-metrics, the p-Fourier Discrepancies are well-defined for any pair of measures. We prove that the p-Fourier Discrepancies are convex, twice differentiable, and that their gradient has an explicit formula. Moreover, we study the lower and upper tight bounds for the p-Fourier Discrepancies in terms of the Total Variation distance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1474361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact