The proposed application of the HBIM methodology for digitising a productive-industrial structure is based on the integration of data from different sources. An aerial photogrammetric survey (Unmanned Aerial Vehicle - UAV) was considered the most appropriate technique for the case. Therefore, a Scan-to-BIM modelling was carried out, keeping in mind a subsequent texturisation of the smart objects employing the photogrammetric images obtained from the UAV survey. Currently, applying the BIM methodology to the built environment is still a challenge; indeed, three-dimensional modelling based on survey point clouds is not automatic. Any BIM software is designed for new constructions, whereas the existing Heritage is characterized by unique and distinctive shapes, where each element has a specific and variable inclination, shape and thickness; therefore, it is necessary to adapt the available tools. Creating intelligent parametric objects capable of representing the unique and singular shapes and geometries of historic architecture is a significant challenge of HBIM modelling. A workflow for the acquisition, processing and management of the survey data and the consequent modelling in a BIM environment of a disused industrial plant previously used as a tobacco factory was formalised. The aim was, therefore, to develop a model that is as close as possible to the real one and, at the same time, still keeps the informative aspects in order to promote the conservation and possible refurbishment of the cultural heritage through the use of photorealistic visualisation tools in real-time. The results confirm the proposed strategy hypotheses and seem to lead to promising future developments.

UAV photogrammetric survey and Image-Based elaborations for an Industrial Plant

Sanseverino, Anna
;
2022-01-01

Abstract

The proposed application of the HBIM methodology for digitising a productive-industrial structure is based on the integration of data from different sources. An aerial photogrammetric survey (Unmanned Aerial Vehicle - UAV) was considered the most appropriate technique for the case. Therefore, a Scan-to-BIM modelling was carried out, keeping in mind a subsequent texturisation of the smart objects employing the photogrammetric images obtained from the UAV survey. Currently, applying the BIM methodology to the built environment is still a challenge; indeed, three-dimensional modelling based on survey point clouds is not automatic. Any BIM software is designed for new constructions, whereas the existing Heritage is characterized by unique and distinctive shapes, where each element has a specific and variable inclination, shape and thickness; therefore, it is necessary to adapt the available tools. Creating intelligent parametric objects capable of representing the unique and singular shapes and geometries of historic architecture is a significant challenge of HBIM modelling. A workflow for the acquisition, processing and management of the survey data and the consequent modelling in a BIM environment of a disused industrial plant previously used as a tobacco factory was formalised. The aim was, therefore, to develop a model that is as close as possible to the real one and, at the same time, still keeps the informative aspects in order to promote the conservation and possible refurbishment of the cultural heritage through the use of photorealistic visualisation tools in real-time. The results confirm the proposed strategy hypotheses and seem to lead to promising future developments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1474914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact