In visual search, the presence of a salient, yet task-irrelevant, distractor in the stimulus array interferes with target selection and slows down performance. Neuroimaging data point to a key role of the frontoparietal dorsal attention network in dealing with visual distractors; however, the respective roles of different nodes within the network and their hemispheric specialization are still unresolved. Here, we used transcranial magnetic stimulation (TMS) to evaluate the causal role of two key regions of the dorsal attention network in resisting attentional capture by a salient singleton distractor: the frontal eye field (FEF) and the cortex within the intraparietal sulcus (IPS). The task of the participants (male/female human volunteers) was to discriminate the pointing direction of a target arrow while ignoring a task-irrelevant salient distractor. Immediately after stimulus onset, triple-pulse 10 Hz TMS was delivered either to IPS or FEF on either side of the brain. Results indicated that TMS over the right FEF significantly reduced the behavioral cost engendered by the salient distractor relative to left FEF stimulation. No such effect was obtained with stimulation of IPS on either side of brain. Interestingly, this FEF-dependent reduction in distractor interference interacted with the contingent trial history, being maximal when no distractor was present on the previous trial relative to when there was one. Our results provide direct causal evidence that the right FEF houses key mechanisms for distractor filtering, pointing to a pivotal role of the frontal cortex of the right hemisphere in limiting interference from an irrelevant but attention-grabbing stimulus.

Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS

Lega, Carlotta;Marini, Francesco;
2019-01-01

Abstract

In visual search, the presence of a salient, yet task-irrelevant, distractor in the stimulus array interferes with target selection and slows down performance. Neuroimaging data point to a key role of the frontoparietal dorsal attention network in dealing with visual distractors; however, the respective roles of different nodes within the network and their hemispheric specialization are still unresolved. Here, we used transcranial magnetic stimulation (TMS) to evaluate the causal role of two key regions of the dorsal attention network in resisting attentional capture by a salient singleton distractor: the frontal eye field (FEF) and the cortex within the intraparietal sulcus (IPS). The task of the participants (male/female human volunteers) was to discriminate the pointing direction of a target arrow while ignoring a task-irrelevant salient distractor. Immediately after stimulus onset, triple-pulse 10 Hz TMS was delivered either to IPS or FEF on either side of the brain. Results indicated that TMS over the right FEF significantly reduced the behavioral cost engendered by the salient distractor relative to left FEF stimulation. No such effect was obtained with stimulation of IPS on either side of brain. Interestingly, this FEF-dependent reduction in distractor interference interacted with the contingent trial history, being maximal when no distractor was present on the previous trial relative to when there was one. Our results provide direct causal evidence that the right FEF houses key mechanisms for distractor filtering, pointing to a pivotal role of the frontal cortex of the right hemisphere in limiting interference from an irrelevant but attention-grabbing stimulus.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1476387
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact