Single nanowires (NWs) have a broad range of applications in nanoelectronics, nanomechanics, and nano photonics, but, to date, no technique can produce single sub 20 nm wide NWs with electrical connections in a scalable fashion. In this work, we combine conventional optical and crack lithographies to generate single NW devices with controllable and predictable dimensions and placement and with individual electrical contacts to the NWs. We demonstrate NWs made of gold, platinum, palladium, tungsten, tin, and metal oxides. We have used conventional i-line stepper lithography with a nominal resolution of 365 nm to define crack lithography structures in a shadow mask for large-scale manufacturing of sub-20 nm wide NWs, which is a 20-fold improvement over the resolution that is possible with the utilized stepper lithography. Overall, the proposed method represents an effective approach to generate single NW devices with useful applications in electrochemistry, photonics, and gas- and biosensing.

Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography

Enrico, Alessandro
Conceptualization
;
2019-01-01

Abstract

Single nanowires (NWs) have a broad range of applications in nanoelectronics, nanomechanics, and nano photonics, but, to date, no technique can produce single sub 20 nm wide NWs with electrical connections in a scalable fashion. In this work, we combine conventional optical and crack lithographies to generate single NW devices with controllable and predictable dimensions and placement and with individual electrical contacts to the NWs. We demonstrate NWs made of gold, platinum, palladium, tungsten, tin, and metal oxides. We have used conventional i-line stepper lithography with a nominal resolution of 365 nm to define crack lithography structures in a shadow mask for large-scale manufacturing of sub-20 nm wide NWs, which is a 20-fold improvement over the resolution that is possible with the utilized stepper lithography. Overall, the proposed method represents an effective approach to generate single NW devices with useful applications in electrochemistry, photonics, and gas- and biosensing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1476759
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact