In this work a hybrid graphene-based flexible micro-supercapacitor (MSC) exploiting a novel composite material was fabricated and extensively characterized. The MSC electrodes have been obtained from a synthesized composite aerogel of reduced graphene oxide and polycrystalline nanoparticles of molybdenum (IV) oxide (MoO2) and then dispersed in a solution containing poly(3,4-ethylenedioxythiophene) (PEDOT). Usually in MSCs the electrons have to percolate through the nanostructured Three-dimensional (3D) matrix in order to reach the collectors, made by metal thin films that provide electrical contacts only on the surface of active material. In the attempt to enable a more efficient charge transfer and to allow direct electrical contact without metal deposition, in this study a highly doped PEDOT acting both as current collector and as binder for the nanocomposite material has been employed. 3D MSCs were fabricated through a Lithographie, Galvanoformung, Abformung (LIGA)-like process to obtain high aspect ratio microstructures in polydimethylsiloxane replicas. Capacitance values of 94 F g(-1) for the nanocomposite and of 14 mF cm(-2) for the device were achieved. Moreover, bending test has demonstrated good performance preservation in a U shape conformation of the device.
A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors
Enrico, AInvestigation
;
2016-01-01
Abstract
In this work a hybrid graphene-based flexible micro-supercapacitor (MSC) exploiting a novel composite material was fabricated and extensively characterized. The MSC electrodes have been obtained from a synthesized composite aerogel of reduced graphene oxide and polycrystalline nanoparticles of molybdenum (IV) oxide (MoO2) and then dispersed in a solution containing poly(3,4-ethylenedioxythiophene) (PEDOT). Usually in MSCs the electrons have to percolate through the nanostructured Three-dimensional (3D) matrix in order to reach the collectors, made by metal thin films that provide electrical contacts only on the surface of active material. In the attempt to enable a more efficient charge transfer and to allow direct electrical contact without metal deposition, in this study a highly doped PEDOT acting both as current collector and as binder for the nanocomposite material has been employed. 3D MSCs were fabricated through a Lithographie, Galvanoformung, Abformung (LIGA)-like process to obtain high aspect ratio microstructures in polydimethylsiloxane replicas. Capacitance values of 94 F g(-1) for the nanocomposite and of 14 mF cm(-2) for the device were achieved. Moreover, bending test has demonstrated good performance preservation in a U shape conformation of the device.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.