Optical nonlinear processes in linearly uncoupled resonators are being actively studied as a convenient way to engineer and control the generation of non-classical light. In these structures, one can take advantage of the independent combs of resonances of two linearly uncoupled ring resonators for field enhancement, with the phase-matching condition being significantly relaxed compared to a single resonator. However, previous implementations of this approach have shown a limited operational bandwidth along with a significant reduction of the generation efficiency. Here, we experimentally demonstrate that a Mach-Zehnder interferometer can be used to effectively linearly uncouple two resonators and, at the same time, allows for their efficient nonlinear coupling. We demonstrate that this structure can lead to an unprecedented control over the rings' interaction and can operate over more than 160 nm, covering the S-, C-, and L-Telecom bands. In addition, we show that the photon pair generation efficiency is increased by a factor of four with respect to previous implementations.

Nonlinear coupling of linearly uncoupled resonators through a Mach-Zehnder interferometer

Sabattoli F. A.
;
Gianini L.;Zatti L.;Garrisi F.;Grassani D.;Sipe J. E.;Liscidini M.;Bajoni D.
;
Galli M.
2022-01-01

Abstract

Optical nonlinear processes in linearly uncoupled resonators are being actively studied as a convenient way to engineer and control the generation of non-classical light. In these structures, one can take advantage of the independent combs of resonances of two linearly uncoupled ring resonators for field enhancement, with the phase-matching condition being significantly relaxed compared to a single resonator. However, previous implementations of this approach have shown a limited operational bandwidth along with a significant reduction of the generation efficiency. Here, we experimentally demonstrate that a Mach-Zehnder interferometer can be used to effectively linearly uncouple two resonators and, at the same time, allows for their efficient nonlinear coupling. We demonstrate that this structure can lead to an unprecedented control over the rings' interaction and can operate over more than 160 nm, covering the S-, C-, and L-Telecom bands. In addition, we show that the photon pair generation efficiency is increased by a factor of four with respect to previous implementations.
2022
Applied Physics/Condensed Matter/Materials Science encompasses the resources of three related disciplines: Applied Physics, Condensed Matter Physics, and Materials Science. The applied physics resources are concerned with the applications of topics in condensed matter as well as optics, vacuum science, lasers, electronics, cryogenics, magnets and magnetism, acoustical physics and mechanics. The condensed matter physics resources are concerned with the study of the structure and the thermal, mechanical, electrical, magnetic and optical properties of condensed matter. They include superconductivity, surfaces, interfaces, thin films, dielectrics, ferroelectrics and semiconductors. The materials science resources are concerned with the physics and chemistry of materials and include ceramics, composites, alloys, metals and metallurgy, nanotechnology, nuclear materials, adhesion and adhesives. Resources dealing with polymeric materials are listed in the Organic Chemistry/Polymer Science category.
Esperti anonimi
Inglese
Internazionale
STAMPA
121
20
201101
https://pubs.aip.org/aip/apl/article/121/20/201101/2834477/Nonlinear-coupling-of-linearly-uncoupled
14
info:eu-repo/semantics/article
262
Sabattoli, F. A.; El Dirani, H.; Youssef, L.; Gianini, L.; Zatti, L.; Garrisi, F.; Grassani, D.; Petit-Etienne, C.; Pargon, E.; Sipe, J. E.; Liscidini...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1477109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact