A femtosecond Mamyshev fiber oscillator in normal dispersion mode at 1 μm was started reliably and safely by an inexpensive diode-pumped passively Q-switched monolithic microchip laser emitting 300-ps pulses. Four-wave mixing spectral broadening is shown to play a pivotal role in starting the Mamyshev oscillator, owing to the random short and intense temporal fluctuations allowed by its ∼10-nm bandwidth. Systematic studies of the starting dynamics show that a success rate of 100% of the attempts is achieved with modest seed energy, as low as ∼30 nJ from the sub-nanosecond laser, corresponding to ∼100 pJ for the total four-wave mixing signal required to start the oscillation.

Femtosecond Mamyshev fiber oscillator started by a passively Q-switched microchip laser

Pizzurro S.;Gotti R.
;
Agnesi A.;Pirzio F.
2022-01-01

Abstract

A femtosecond Mamyshev fiber oscillator in normal dispersion mode at 1 μm was started reliably and safely by an inexpensive diode-pumped passively Q-switched monolithic microchip laser emitting 300-ps pulses. Four-wave mixing spectral broadening is shown to play a pivotal role in starting the Mamyshev oscillator, owing to the random short and intense temporal fluctuations allowed by its ∼10-nm bandwidth. Systematic studies of the starting dynamics show that a success rate of 100% of the attempts is achieved with modest seed energy, as low as ∼30 nJ from the sub-nanosecond laser, corresponding to ∼100 pJ for the total four-wave mixing signal required to start the oscillation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1477238
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact