Pleurotus spp. have been gaining popularity as a source for the creation of functionnutraceuticals, aceuticals and novel pharmaceuticals. Despite Pleurotus is a specious genus including 208 legitimate species, only a few of them such as P. ostreatus are commercially accessible. The genetic and metabolic diversity of Pleurotus both at specific and subspecific level is therefore of main concern for many researchers. In addition to the conventional morphological approach, molecular and biochemical markers have been greatly contributing to investigate these issues. In this study, samples from six Pleurotus species (P. eryngii is represented by three varieties) were molecularly identified and the phylogeny was inferred to assess the relationships between the various taxa. Strains in pure culture obtained from 6 out of 7 species were cultivated as mycelium in vitro to investigate the metabolites by untargeted LC-MS/MS–based metabolomics. The results pointed out species-specific metabolite patterns and highlighted a clear difference between the P. eryngii group and P. ostreatus, although the latter appears more versatile depending on the strain. This is the first study pointing out and comparing different metabolite patterns in Italian samples of Pleurotus species, including P. eryngii varieties.
Diversity of Pleurotus spp. (Agaricomycetes) and their metabolites of nutraceutical and therapeutic importance
Girometta C. E.
;
2023-01-01
Abstract
Pleurotus spp. have been gaining popularity as a source for the creation of functionnutraceuticals, aceuticals and novel pharmaceuticals. Despite Pleurotus is a specious genus including 208 legitimate species, only a few of them such as P. ostreatus are commercially accessible. The genetic and metabolic diversity of Pleurotus both at specific and subspecific level is therefore of main concern for many researchers. In addition to the conventional morphological approach, molecular and biochemical markers have been greatly contributing to investigate these issues. In this study, samples from six Pleurotus species (P. eryngii is represented by three varieties) were molecularly identified and the phylogeny was inferred to assess the relationships between the various taxa. Strains in pure culture obtained from 6 out of 7 species were cultivated as mycelium in vitro to investigate the metabolites by untargeted LC-MS/MS–based metabolomics. The results pointed out species-specific metabolite patterns and highlighted a clear difference between the P. eryngii group and P. ostreatus, although the latter appears more versatile depending on the strain. This is the first study pointing out and comparing different metabolite patterns in Italian samples of Pleurotus species, including P. eryngii varieties.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.