Key message: The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Abstract: Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration–dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.

Molecular dynamics of seed priming at the crossroads between basic and applied research

Macovei Anca;Balestrazzi Alma
2023-01-01

Abstract

Key message: The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Abstract: Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration–dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1477820
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact