: Non-destructive characterisation of meteorites is here performed on a stony meteorite. The identification of the sample is performed by low-background γ-ray spectrometry in order to determine the presence of certain cosmogenic radionuclides, whereas a mineralogical phase quantitative analysis is carried out by Time-of-Flight Neutron Diffraction (ToF-ND) on the sample as-it-is. The protocol is then validated by applying micro-Raman Spectroscopy (μRS) and Energy Dispersive X-ray Spectroscopy (EDS). This paper is focused on γ-ray spectrometry, proving the meteoric origin of the sample, and it also presents some preliminary results of ToF-ND.

Low-background gamma spectrometry and neutron diffraction in the study of stony meteorites

Musa M.;Riccardi M. P.;
2023-01-01

Abstract

: Non-destructive characterisation of meteorites is here performed on a stony meteorite. The identification of the sample is performed by low-background γ-ray spectrometry in order to determine the presence of certain cosmogenic radionuclides, whereas a mineralogical phase quantitative analysis is carried out by Time-of-Flight Neutron Diffraction (ToF-ND) on the sample as-it-is. The protocol is then validated by applying micro-Raman Spectroscopy (μRS) and Energy Dispersive X-ray Spectroscopy (EDS). This paper is focused on γ-ray spectrometry, proving the meteoric origin of the sample, and it also presents some preliminary results of ToF-ND.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1477857
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact