IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. We performed a genome-wide association study involving 10,146 kidney biopsy-diagnosed IgAN cases and 28,751 matched controls across 17 international cohorts. We defined 30 independent genome-wide significant loci jointly explaining 11% of disease risk. A total of 16 loci were novel, including TNFSF4, REL, CD28, CXCL8/PF4V1, LY86, LYN, ANXA3, TNFSF8/15, REEP3, ZMIZ1, RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The SNP-based heritability of IgAN was estimated at 23%. The polygenic risk of IgAN was associated with early disease onset and increased lifetime risk of end stage kidney failure. We observed a positive genetic correlation between IgAN and total serum IgA levels, allergy, tonsillectomy, and several infections, and a negative correlation with inflammatory bowel disease. Strikingly, all significant non-HLA loci shared with serum IgA levels had a concordant effect on the risk of IgAN. Moreover, IgAN loci were globally enriched in gene orthologs causing abnormal IgA levels when knocked out in mice. The explained heritability was enriched in the regulatory elements of cells from the immune and hematopoietic systems and intestinal mucosa, providing support for the pathogenic role of extra-renal tissues. In the comprehensive functional annotation analysis of candidate causal genes across genome-wide significant loci, we observed the convergence of biological candidates on a common set of inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug targets.

Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy

Ciro Esposito;
In corso di stampa

Abstract

IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. We performed a genome-wide association study involving 10,146 kidney biopsy-diagnosed IgAN cases and 28,751 matched controls across 17 international cohorts. We defined 30 independent genome-wide significant loci jointly explaining 11% of disease risk. A total of 16 loci were novel, including TNFSF4, REL, CD28, CXCL8/PF4V1, LY86, LYN, ANXA3, TNFSF8/15, REEP3, ZMIZ1, RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The SNP-based heritability of IgAN was estimated at 23%. The polygenic risk of IgAN was associated with early disease onset and increased lifetime risk of end stage kidney failure. We observed a positive genetic correlation between IgAN and total serum IgA levels, allergy, tonsillectomy, and several infections, and a negative correlation with inflammatory bowel disease. Strikingly, all significant non-HLA loci shared with serum IgA levels had a concordant effect on the risk of IgAN. Moreover, IgAN loci were globally enriched in gene orthologs causing abnormal IgA levels when knocked out in mice. The explained heritability was enriched in the regulatory elements of cells from the immune and hematopoietic systems and intestinal mucosa, providing support for the pathogenic role of extra-renal tissues. In the comprehensive functional annotation analysis of candidate causal genes across genome-wide significant loci, we observed the convergence of biological candidates on a common set of inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug targets.
In corso di stampa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1479028
Citazioni
  • ???jsp.display-item.citation.pmc??? 277
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact