Hydrogen (H) plays a key role in the near-to-room temperature superconductivity of hydrides at megabar pressures. This suggests that H doping could have similar effects on the electronic and phononic spectra of materials at ambient pressure as well. Here, we demonstrate the non-volatile control of the electronic ground state of titanium diselenide (1T-TiSe2) via ionic liquid gating-driven H intercalation. This protonation induces a superconducting phase, observed together with a charge-density wave through most of the phase diagram, with nearly doping-independent transition temperatures. The H-induced superconducting phase is possibly gapless-like and multi-band in nature, in contrast with those induced in TiSe2 via copper, lithium, and electrostatic doping. This unique behavior is supported by ab initio calculations showing that high concentrations of H dopants induce a full reconstruction of the bandstructure, although with little coupling between electrons and high-frequency H phonons. Our findings provide a promising approach for engineering the ground state of transition metal dichalcogenides and other layered materials via gate-controlled protonation.

Superconductivity induced by gate-driven hydrogen intercalation in the charge-density-wave compound 1T-TiSe2

Giacomo Prando;Pietro Carretta;
2023-01-01

Abstract

Hydrogen (H) plays a key role in the near-to-room temperature superconductivity of hydrides at megabar pressures. This suggests that H doping could have similar effects on the electronic and phononic spectra of materials at ambient pressure as well. Here, we demonstrate the non-volatile control of the electronic ground state of titanium diselenide (1T-TiSe2) via ionic liquid gating-driven H intercalation. This protonation induces a superconducting phase, observed together with a charge-density wave through most of the phase diagram, with nearly doping-independent transition temperatures. The H-induced superconducting phase is possibly gapless-like and multi-band in nature, in contrast with those induced in TiSe2 via copper, lithium, and electrostatic doping. This unique behavior is supported by ab initio calculations showing that high concentrations of H dopants induce a full reconstruction of the bandstructure, although with little coupling between electrons and high-frequency H phonons. Our findings provide a promising approach for engineering the ground state of transition metal dichalcogenides and other layered materials via gate-controlled protonation.
2023
Applied Physics/Condensed Matter/Materials Science encompasses the resources of three related disciplines: Applied Physics, Condensed Matter Physics, and Materials Science. The applied physics resources are concerned with the applications of topics in condensed matter as well as optics, vacuum science, lasers, electronics, cryogenics, magnets and magnetism, acoustical physics and mechanics. The condensed matter physics resources are concerned with the study of the structure and the thermal, mechanical, electrical, magnetic and optical properties of condensed matter. They include superconductivity, surfaces, interfaces, thin films, dielectrics, ferroelectrics and semiconductors. The materials science resources are concerned with the physics and chemistry of materials and include ceramics, composites, alloys, metals and metallurgy, nanotechnology, nuclear materials, adhesion and adhesives. Resources dealing with polymeric materials are listed in the Organic Chemistry/Polymer Science category.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
6
202-1
202-12
12
https://www.nature.com/articles/s42005-023-01330-w
12
info:eu-repo/semantics/article
262
Piatti, Erik; Prando, Giacomo; Meinero, Martina; Tresca, Cesare; Putti, Marina; Roddaro, Stefano; Lamura, Gianrico; Shiroka, Toni; Carretta, Pietro; P...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1482338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact