Tendon disordersare common medical conditions, which can be greatlydebilitating as they are often accompanied by great pain and inflammation.The techniques used nowadays for the treatment of chronic tendon injuriesoften involve surgery. However, one critical aspect of this procedureinvolves the scar tissue, characterized by mechanical properties thatvary from healthy tissue, rendering the tendons inclined to reinjuryor rupture. Synthetic polymers, such as thermoplastic polyurethane,are of special interest in the tissue engineering field as they allowthe production of scaffolds with controlled elastic and mechanicalproperties, which could guarantee an effective support during thenew tissue formation. The aim of this work was the design and thedevelopment of tubular nanofibrous scaffolds based on thermoplasticpolyurethane and enriched with cerium oxide nanoparticles and chondroitinsulfate. The scaffolds were characterized by remarkable mechanicalproperties, especially when tubular aligned, reaching values comparableto the ones of the native tendons. A weight loss test was performed,suggesting a degradation in prolonged times. In particular, the scaffoldsmaintained their morphology and also remarkable mechanical propertiesafter 12 weeks of degradation. The scaffolds promoted the cell adhesionand proliferation, in particular when in aligned conformation. Finally,the systems in vivo did not cause any inflammatory effect, representinginteresting platforms for the regeneration of injured tendons.

Cerium Oxide and Chondroitin Sulfate Doped Polyurethane Scaffold to Bridge Tendons

Bianchi E.;Ruggeri M.;Vigani B.;Boselli C.;Icaro Cornaglia A.;Rossi S.;Sandri G.
2023-01-01

Abstract

Tendon disordersare common medical conditions, which can be greatlydebilitating as they are often accompanied by great pain and inflammation.The techniques used nowadays for the treatment of chronic tendon injuriesoften involve surgery. However, one critical aspect of this procedureinvolves the scar tissue, characterized by mechanical properties thatvary from healthy tissue, rendering the tendons inclined to reinjuryor rupture. Synthetic polymers, such as thermoplastic polyurethane,are of special interest in the tissue engineering field as they allowthe production of scaffolds with controlled elastic and mechanicalproperties, which could guarantee an effective support during thenew tissue formation. The aim of this work was the design and thedevelopment of tubular nanofibrous scaffolds based on thermoplasticpolyurethane and enriched with cerium oxide nanoparticles and chondroitinsulfate. The scaffolds were characterized by remarkable mechanicalproperties, especially when tubular aligned, reaching values comparableto the ones of the native tendons. A weight loss test was performed,suggesting a degradation in prolonged times. In particular, the scaffoldsmaintained their morphology and also remarkable mechanical propertiesafter 12 weeks of degradation. The scaffolds promoted the cell adhesionand proliferation, in particular when in aligned conformation. Finally,the systems in vivo did not cause any inflammatory effect, representinginteresting platforms for the regeneration of injured tendons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1482450
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact