Within the European FP7 Project "INSYSME", the research unit of the University of Pavia has developed a seismic-resistant masonry infill system with original details, which subdivides the masonry panel into horizontal stripes through the insertion of "sliding joints" and deformable joints at the infill-frame interface. The out-of-plane stability is governed by the flexural/arching resistance of the masonry stripes and adequate supports at the RC columns. An extensive experimental campaign has been performed. In this paper, the results of the out-of-plane dynamic tests on shaking-table conducted on the specimens with and without opening are discussed. These types of tests, never applied before on innovative masonry infill typologies, have involved a very demanding testing protocol, constituted of artificial input motions at increasing intensity. To interpret the test results and provide first indications for safety checks, simplified numerical and analytical simulations of the tests have been conducted. According to the out-of-plane experimental performance of this innovative infill system and to the satisfactory in-plane response, the solution appears to be very promising for real applications.

Out-of-plane Response of an Innovative Masonry Infill with Sliding Joints from Shaking Table Tests

R. R. Milanesi;P. Morandi
;
C. F. Manzini;L. Albanesi;G. Magenes
Funding Acquisition
2022-01-01

Abstract

Within the European FP7 Project "INSYSME", the research unit of the University of Pavia has developed a seismic-resistant masonry infill system with original details, which subdivides the masonry panel into horizontal stripes through the insertion of "sliding joints" and deformable joints at the infill-frame interface. The out-of-plane stability is governed by the flexural/arching resistance of the masonry stripes and adequate supports at the RC columns. An extensive experimental campaign has been performed. In this paper, the results of the out-of-plane dynamic tests on shaking-table conducted on the specimens with and without opening are discussed. These types of tests, never applied before on innovative masonry infill typologies, have involved a very demanding testing protocol, constituted of artificial input motions at increasing intensity. To interpret the test results and provide first indications for safety checks, simplified numerical and analytical simulations of the tests have been conducted. According to the out-of-plane experimental performance of this innovative infill system and to the satisfactory in-plane response, the solution appears to be very promising for real applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1482539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact