This paper aims to assess the impact of partitioning on optimal installation of control valves for leakage minimization in water distribution networks (WDNs). The methodology used includes two main elements. The first element is a deterministic algorithm operating through the sequential addition of control valves, producing a Pareto front of optimal solutions in the trade-off between number of control valves installed and daily leakage volume, to be both minimized. The second element is a WDN partitioning algorithm based on the minimization of the transport function, for the partitioning of the WDN into a number of partitions equal to the number of WDN sources. The methodology is applied to two Italian WDNs with different characteristics. Due to variations in flow distribution induced by the partitioning, the valve locations optimally selected in the partitioned WDN prove slightly different from those in the unpartitioned WDN. Furthermore, the number of control valves being the same, better leakage reduction effects (up to 8%) are obtained in the partitioned WDN.
Assessing the impact of partitioning on optimal installation of control valves for leakage minimization in WDNs
Creaco E.
;
2021-01-01
Abstract
This paper aims to assess the impact of partitioning on optimal installation of control valves for leakage minimization in water distribution networks (WDNs). The methodology used includes two main elements. The first element is a deterministic algorithm operating through the sequential addition of control valves, producing a Pareto front of optimal solutions in the trade-off between number of control valves installed and daily leakage volume, to be both minimized. The second element is a WDN partitioning algorithm based on the minimization of the transport function, for the partitioning of the WDN into a number of partitions equal to the number of WDN sources. The methodology is applied to two Italian WDNs with different characteristics. Due to variations in flow distribution induced by the partitioning, the valve locations optimally selected in the partitioned WDN prove slightly different from those in the unpartitioned WDN. Furthermore, the number of control valves being the same, better leakage reduction effects (up to 8%) are obtained in the partitioned WDN.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.