In this work, we report the modeling and the experimental demonstration of intermodal spontaneous as well as stimulated four-wave mixing (FWM) in silicon waveguides. In intermodal FWM, the phase-matching condition is achieved by exploiting the different dispersion profiles of the optical modes in a multimode waveguide. Since both the energy and the wave vectors have to be conserved in the FWM process, this leads to a wide tunability of the generated photon wavelength, allowing us to achieve a large spectral conversion. We measured several waveguides that differ by their widths and demonstrate large signal generation spanning from the pump wavelength (1550 nm) down to 1202 nm. A suited setup evidences that the different waves propagated indeed on different order modes, which supports the modeling. Despite observing a reduced efficiency with respect to intramodal FWM due to the decreased modal overlap, we were able to show a maximum spectral distance between the signal and idler of 979.6 nm with a 1550 nm pump. Our measurements suggest the intermodal FWM is a viable means for large wavelength conversion and heralded photon sources.
Intermodal four-wave mixing in silicon waveguides
Borghi M.;
2018-01-01
Abstract
In this work, we report the modeling and the experimental demonstration of intermodal spontaneous as well as stimulated four-wave mixing (FWM) in silicon waveguides. In intermodal FWM, the phase-matching condition is achieved by exploiting the different dispersion profiles of the optical modes in a multimode waveguide. Since both the energy and the wave vectors have to be conserved in the FWM process, this leads to a wide tunability of the generated photon wavelength, allowing us to achieve a large spectral conversion. We measured several waveguides that differ by their widths and demonstrate large signal generation spanning from the pump wavelength (1550 nm) down to 1202 nm. A suited setup evidences that the different waves propagated indeed on different order modes, which supports the modeling. Despite observing a reduced efficiency with respect to intramodal FWM due to the decreased modal overlap, we were able to show a maximum spectral distance between the signal and idler of 979.6 nm with a 1550 nm pump. Our measurements suggest the intermodal FWM is a viable means for large wavelength conversion and heralded photon sources.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.