We prove exponential convergence in the energy norm of hp-finite element discretizations for the integral fractional Laplacian of order 2s ∈ (0, 2) subject to homogeneous Dirichlet boundary conditions in bounded polygonal domains Ω ⊂ R2. Key ingredients in the analysis are the weighted analytic regularity from [M. Faustmann, C. Marcati, J. M. Melenk, and C. Schwab, SIAM J. Math. Anal., 54 (2022), pp. 6323-6357] and meshes that feature anisotropic geometric refinement towards ∂Ω .

Exponential Convergence of hp-FEM for the Integral Fractional Laplacian in Polygons

Carlo Marcati;
2023-01-01

Abstract

We prove exponential convergence in the energy norm of hp-finite element discretizations for the integral fractional Laplacian of order 2s ∈ (0, 2) subject to homogeneous Dirichlet boundary conditions in bounded polygonal domains Ω ⊂ R2. Key ingredients in the analysis are the weighted analytic regularity from [M. Faustmann, C. Marcati, J. M. Melenk, and C. Schwab, SIAM J. Math. Anal., 54 (2022), pp. 6323-6357] and meshes that feature anisotropic geometric refinement towards ∂Ω .
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1486900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact