In this paper, we develop in detail the geometric constructions that lead to many uniqueness results for the determination of polyhedral sets, typically scatterers, by a finite minimal number of measurements. We highlight how unique continuation and a suitable reflection principle are enough to proceed with the constructions without any other assumption on the underlying partial differential equation or the boundary condition.We also aim to keep the geometric constructions and their proofs as simple as possible. To illustrate the applicability of this theory, we show how several uniqueness results present in the literature immediately follow from our arguments. Indeed, we believe that this theory may serve as a roadmap for establishing similar uniqueness results for other partial differential equations or boundary conditions.
On Unique Determination of Polyhedral Sets
Rondi, Luca
2023-01-01
Abstract
In this paper, we develop in detail the geometric constructions that lead to many uniqueness results for the determination of polyhedral sets, typically scatterers, by a finite minimal number of measurements. We highlight how unique continuation and a suitable reflection principle are enough to proceed with the constructions without any other assumption on the underlying partial differential equation or the boundary condition.We also aim to keep the geometric constructions and their proofs as simple as possible. To illustrate the applicability of this theory, we show how several uniqueness results present in the literature immediately follow from our arguments. Indeed, we believe that this theory may serve as a roadmap for establishing similar uniqueness results for other partial differential equations or boundary conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.