Within a geometrical context, we derive an explicit formula for the computation of the symmetric logarithmic derivative for arbitrarily mixed quantum systems, provided that the structure constants of the associated unitary Lie algebra are known. To give examples of this procedure, we first recover the known formulae for two-level mixed and three-level pure state systems and then apply it to the novel case of U(3), that is for arbitrarily mixed three-level systems (q-trits). Exploiting the latter result, we finally calculate an expression for the Fisher tensor for a q-trit considering also all possible degenerate subcases. © 2013 Elsevier B.V. All rights reserved.

Symmetric logarithmic derivative for general n-level systems and the quantum Fisher information tensor for three-level systems

Schiavina M.
2013-01-01

Abstract

Within a geometrical context, we derive an explicit formula for the computation of the symmetric logarithmic derivative for arbitrarily mixed quantum systems, provided that the structure constants of the associated unitary Lie algebra are known. To give examples of this procedure, we first recover the known formulae for two-level mixed and three-level pure state systems and then apply it to the novel case of U(3), that is for arbitrarily mixed three-level systems (q-trits). Exploiting the latter result, we finally calculate an expression for the Fisher tensor for a q-trit considering also all possible degenerate subcases. © 2013 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1487506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact