Handly and easy-to-use optical instrumentation is very important for food safety monitoring, as it provides the possibility to assess law and health compliances at every stage of the food chain. In particular, the Surface-enhanced Raman Scattering (SERS) method appears highly promising because the intrinsic drawback of Raman spectroscopy, i.e., the natural weakness of the effect and, in turn, of the signal, is overcome thanks to the peculiar interaction between laser light and plasmonic excitations at the SERS substrate. This fact paved the way for the widespread use of SERS sensing not only for food safety but also for biomedicine, pharmaceutical process analysis, forensic science, cultural heritage and more. However, the current technological maturity of the SERS technique does not find a counterpart in the recognition of SERS as a routine method in compliance protocols. This is mainly due to the very scattered landscape of SERS substrates designed and tailored specifically for the targeted analyte. In fact, a very large variety of SERS substrates were proposed for molecular sensing in different environments and matrices. This review presents the advantages and perspectives of SERS sensing in food safety. The focus of the survey is limited to specific analytes of interest for producers, consumers and stakeholders in Oltrepò Pavese, a definite regional area that is located within the district of Pavia in the northern part of Italy. Our attention has been addressed to (i) glyphosate in rice fields, (ii) histamine in a world-famous local product (wine), (iii) tetracycline, an antibiotic often detected in waste sludges that can be dangerous, for instance in maize crops and (iv) Sudan dyes—used as adulterants—in the production of saffron and other spices, which represent niche crops for Oltrepò. The review aims to highlight the SERS performance for each analyte, with a discussion of the different methods used to prepare SERS substrates and the different reported limits of detection.
Food Safety Issues in the Oltrepò Pavese Area: A SERS Sensing Perspective
Benedetta Albini;Pietro Galinetto;Serena Schiavi;Enrico Giulotto
2023-01-01
Abstract
Handly and easy-to-use optical instrumentation is very important for food safety monitoring, as it provides the possibility to assess law and health compliances at every stage of the food chain. In particular, the Surface-enhanced Raman Scattering (SERS) method appears highly promising because the intrinsic drawback of Raman spectroscopy, i.e., the natural weakness of the effect and, in turn, of the signal, is overcome thanks to the peculiar interaction between laser light and plasmonic excitations at the SERS substrate. This fact paved the way for the widespread use of SERS sensing not only for food safety but also for biomedicine, pharmaceutical process analysis, forensic science, cultural heritage and more. However, the current technological maturity of the SERS technique does not find a counterpart in the recognition of SERS as a routine method in compliance protocols. This is mainly due to the very scattered landscape of SERS substrates designed and tailored specifically for the targeted analyte. In fact, a very large variety of SERS substrates were proposed for molecular sensing in different environments and matrices. This review presents the advantages and perspectives of SERS sensing in food safety. The focus of the survey is limited to specific analytes of interest for producers, consumers and stakeholders in Oltrepò Pavese, a definite regional area that is located within the district of Pavia in the northern part of Italy. Our attention has been addressed to (i) glyphosate in rice fields, (ii) histamine in a world-famous local product (wine), (iii) tetracycline, an antibiotic often detected in waste sludges that can be dangerous, for instance in maize crops and (iv) Sudan dyes—used as adulterants—in the production of saffron and other spices, which represent niche crops for Oltrepò. The review aims to highlight the SERS performance for each analyte, with a discussion of the different methods used to prepare SERS substrates and the different reported limits of detection.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.