Chromonic nematics are lyotropic liquid crystals that have already been known for half a century, but have only recently raised interest for their potential applications in life sciences. Determining elastic constants and anchoring strengths for rigid substrates has thus become a priority in the characterization of these materials. Here we present a method to determine chromonics’ planar anchoring strength. We call it geometric as it is based on recognition and fitting of the stable equilibrium shapes of droplets surrounded by the isotropic phase in a thin cell with plates enforcing parallel alignments of the nematic director. We apply our method to shapes observed in experiments; they resemble elongated rods with round ends, which are called bâtonnets. Our theory also predicts other droplets’ equilibrium shapes, which are either slender and round, called discoids, or slender and pointed, called tactoids. In particular, sufficiently small droplets are expected to display shape bistability, with two equilibrium shapes, one tactoid and one discoid, exchanging roles as stable and metastable shapes upon varying their common area.

Geometric method to determine planar anchoring strength for chromonics

Paparini, Silvia;Virga, Epifanio G.
2023-01-01

Abstract

Chromonic nematics are lyotropic liquid crystals that have already been known for half a century, but have only recently raised interest for their potential applications in life sciences. Determining elastic constants and anchoring strengths for rigid substrates has thus become a priority in the characterization of these materials. Here we present a method to determine chromonics’ planar anchoring strength. We call it geometric as it is based on recognition and fitting of the stable equilibrium shapes of droplets surrounded by the isotropic phase in a thin cell with plates enforcing parallel alignments of the nematic director. We apply our method to shapes observed in experiments; they resemble elongated rods with round ends, which are called bâtonnets. Our theory also predicts other droplets’ equilibrium shapes, which are either slender and round, called discoids, or slender and pointed, called tactoids. In particular, sufficiently small droplets are expected to display shape bistability, with two equilibrium shapes, one tactoid and one discoid, exchanging roles as stable and metastable shapes upon varying their common area.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1487677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact