This article presents the design process of a structure that shields the electromagnetic field from the fifth-generation transmitter operating in the 3.5 GHz band. The purpose of this project is the limitation of power density in the eye region. For this reason, the structure is made of conducting wires forming a grid that is semitransparent to the light. The design was performed using computer simulations with a finite-difference time-domain method and an evolutionary-based optimization methodology. A simplified model of the face and eyes was developed to reduce the amount of time needed for the simulation. The construction of the shielding structure presented here can be easily fabricated in the form of protective goggles. The results of the computer simulations show that the power density in the eye region can be reduced by almost seven times compared with the unshielded case.
Eye Shielding against Electromagnetic Radiation: Optimal Design Using a Reduced Model of the Head
Januszkiewicz L.;Di Barba P.;
2023-01-01
Abstract
This article presents the design process of a structure that shields the electromagnetic field from the fifth-generation transmitter operating in the 3.5 GHz band. The purpose of this project is the limitation of power density in the eye region. For this reason, the structure is made of conducting wires forming a grid that is semitransparent to the light. The design was performed using computer simulations with a finite-difference time-domain method and an evolutionary-based optimization methodology. A simplified model of the face and eyes was developed to reduce the amount of time needed for the simulation. The construction of the shielding structure presented here can be easily fabricated in the form of protective goggles. The results of the computer simulations show that the power density in the eye region can be reduced by almost seven times compared with the unshielded case.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.