Electromagnetic metamaterials (MMs) are artificial composites that exhibit exceptional physical characteristics. Their design, which relies on the retrieving of the effective medium parameters, is usually a very time-consuming process because of the high number of full-wave simulations involved in this task. To alleviate the related computational burden, we propose to use a Multi-fidelity Surrogate Modelling (MFSM) approach. Numerical results demonstrate that this methodology turns out to be promising for a quick evaluation of the scattering parameters from which the effective constitutive parameters of a MM are retrieved, as shown by two numerical examples.
Quick retrieval of effective electromagnetic metamaterial parameters by using a Multi-fidelity Surrogate Modelling approach
Di Barba P.
2020-01-01
Abstract
Electromagnetic metamaterials (MMs) are artificial composites that exhibit exceptional physical characteristics. Their design, which relies on the retrieving of the effective medium parameters, is usually a very time-consuming process because of the high number of full-wave simulations involved in this task. To alleviate the related computational burden, we propose to use a Multi-fidelity Surrogate Modelling (MFSM) approach. Numerical results demonstrate that this methodology turns out to be promising for a quick evaluation of the scattering parameters from which the effective constitutive parameters of a MM are retrieved, as shown by two numerical examples.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.