Hydrogen sulfide (H2S) is an endogenous gaseous molecule present in all living organisms that has been traditionally studied for its toxicity. Interestingly, increased understanding of H2S effects in organ physiology has recently shown its relevance as a signalling molecule, with potentially important implications in variety of clinical disorders, including cancer. H2S is primarily produced in mammalian cells under various enzymatic pathways are target of intense research biological mechanisms, and therapeutic effects of H2S. Herein, we describe the physiological and biochemical properties of H2S, the enzymatic pathways leading to its endogenous production and its catabolic routes. In addition, we discuss the role of currently known H2S-releasing agents, or H2S donors, including their potential as therapeutic tools. Then we illustrate the mechanisms known to support the pleiotropic effects of H2S, with a particular focus on persulfhydration, which plays a key role in H2S-mediating signalling pathways. We then address the paradoxical role played by H2S in tumour biology and discuss the potential of exploiting H2S levels as novel cancer biomarkers and diagnostic tools. Finally, we describe the most recent preclinical applications focused on assessing the anti-cancer impact of most common H2S-releasing compounds. While the evidence in favour of H2S as an alternative cancer therapy in the field of translational medicine is yet to be clearly provided, application of H2S is emerging as a potent anticancer therapy in preclinical trails.

Hydrogen Sulfide (H2S): As a Potent Modulator and Therapeutic Prodrug in Cancer

Faris, Pawan
;
Negri, Sharon;Scolari, Francesca;Moccia, Francesco
2023-01-01

Abstract

Hydrogen sulfide (H2S) is an endogenous gaseous molecule present in all living organisms that has been traditionally studied for its toxicity. Interestingly, increased understanding of H2S effects in organ physiology has recently shown its relevance as a signalling molecule, with potentially important implications in variety of clinical disorders, including cancer. H2S is primarily produced in mammalian cells under various enzymatic pathways are target of intense research biological mechanisms, and therapeutic effects of H2S. Herein, we describe the physiological and biochemical properties of H2S, the enzymatic pathways leading to its endogenous production and its catabolic routes. In addition, we discuss the role of currently known H2S-releasing agents, or H2S donors, including their potential as therapeutic tools. Then we illustrate the mechanisms known to support the pleiotropic effects of H2S, with a particular focus on persulfhydration, which plays a key role in H2S-mediating signalling pathways. We then address the paradoxical role played by H2S in tumour biology and discuss the potential of exploiting H2S levels as novel cancer biomarkers and diagnostic tools. Finally, we describe the most recent preclinical applications focused on assessing the anti-cancer impact of most common H2S-releasing compounds. While the evidence in favour of H2S as an alternative cancer therapy in the field of translational medicine is yet to be clearly provided, application of H2S is emerging as a potent anticancer therapy in preclinical trails.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1490762
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact