The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently because they typically represent small perturbations in the light-matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold for plasmon-enhanced nonlinear optics by providing evidence of a sum-frequency generation (SFG) process seeded by SHG, which sizably contributes to the overall THG yield. We address this mechanism by unveiling a characteristic fingerprint in the polarization state of the THG emission from gold noncentrosymmetric nanoantennas, which directly reflects the asymmetric distribution of second-harmonic fields within the structure and does not depend on the model one employs to describe photon upconversion. We suggest that such cascaded processes may also appear for structures that exhibit only moderate SHG yields. The presence of this peculiar mechanism in THG from plasmonic nanoantennas at telecommunication wavelengths allows us to gain further insight into the physics of plasmon-enhanced nonlinear optical processes. This could be crucial in the realization of nanoscale elements for photon conversion and manipulation operating at room temperature.
Evidence of Cascaded Third-Harmonic Generation in Noncentrosymmetric Gold Nanoantennas
Pellegrini G.;
2019-01-01
Abstract
The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently because they typically represent small perturbations in the light-matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold for plasmon-enhanced nonlinear optics by providing evidence of a sum-frequency generation (SFG) process seeded by SHG, which sizably contributes to the overall THG yield. We address this mechanism by unveiling a characteristic fingerprint in the polarization state of the THG emission from gold noncentrosymmetric nanoantennas, which directly reflects the asymmetric distribution of second-harmonic fields within the structure and does not depend on the model one employs to describe photon upconversion. We suggest that such cascaded processes may also appear for structures that exhibit only moderate SHG yields. The presence of this peculiar mechanism in THG from plasmonic nanoantennas at telecommunication wavelengths allows us to gain further insight into the physics of plasmon-enhanced nonlinear optical processes. This could be crucial in the realization of nanoscale elements for photon conversion and manipulation operating at room temperature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.