Fluctuations in redox conditions in bioprocesses can alter the end-products, reduce their concentration, and lengthen the process time. Electrofermentation enables rapid metabolic modulation of biosynthesis and allows control of redox imbalances in biofilm-based fermentation processes. In this study, electrofermentation is used to boost the production of the bacterial biopolymer poly-γ-glutamic acid (γ-PGA) from Bacillus subtilis ATCC 6051. When compared to control experiments (3.3 ± 0.99 g L-1 ), the application of an electrode potential E = 0.4 V versus Ag/AgCl results in a more than two-fold increase in the production of γ-PGA (9.13 ± 1.4 g L-1 ). Using an engineered B. subtilis strain, in which γ-PGA production is driven by isopropyl β-d-1-thiogalactopyranoside, electrofermentation improves polymer concentrations from 15.4 ± 1.5 to 23.1 ± 1.6 versus g L-1 . These results confirm that electrofermentation conditions can be adopted to increase the concentration of γ-PGA and perhaps other extracellular biopolymers in industrial strains.

Electrofermentation increases concentration of poly γ‐glutamic acid in Bacillus subtilis biofilms

Calvio, Cinzia
Resources
;
2024-01-01

Abstract

Fluctuations in redox conditions in bioprocesses can alter the end-products, reduce their concentration, and lengthen the process time. Electrofermentation enables rapid metabolic modulation of biosynthesis and allows control of redox imbalances in biofilm-based fermentation processes. In this study, electrofermentation is used to boost the production of the bacterial biopolymer poly-γ-glutamic acid (γ-PGA) from Bacillus subtilis ATCC 6051. When compared to control experiments (3.3 ± 0.99 g L-1 ), the application of an electrode potential E = 0.4 V versus Ag/AgCl results in a more than two-fold increase in the production of γ-PGA (9.13 ± 1.4 g L-1 ). Using an engineered B. subtilis strain, in which γ-PGA production is driven by isopropyl β-d-1-thiogalactopyranoside, electrofermentation improves polymer concentrations from 15.4 ± 1.5 to 23.1 ± 1.6 versus g L-1 . These results confirm that electrofermentation conditions can be adopted to increase the concentration of γ-PGA and perhaps other extracellular biopolymers in industrial strains.
File in questo prodotto:
File Dimensione Formato  
Microbial Biotechnology - 2024 - Adilkhanova - Electrofermentation increases concentration of poly ‐glutamic acid in.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1494415
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact