Background: Resilience is defined as the ability to modify thoughts to cope with stressful events. Patients with schizophrenia (SCZ) having higher resilience (HR) levels show less severe symptoms and better real-life functioning. However, the clinical factors contributing to determine resilience levels in patients remain unclear. Thus, based on psychological, historical, clinical and environmental variables, we built a supervised machine learning algorithm to classify patients with HR or lower resilience (LR). Methods: SCZ from the Italian Network for Research on Psychoses (N = 598 in the Discovery sample, N = 298 in the Validation sample) underwent historical, clinical, psychological, environmental and resilience assessments. A Support Vector Machine algorithm (based on 85 variables extracted from the above-mentioned assessments) was built in the Discovery sample, and replicated in the Validation sample, to classify between HR and LR patients, within a nested, Leave-Site-Out Cross-Validation framework. We then investigated whether algorithm decision scores were associated with the cognitive and clinical characteristics of patients. Results: The algorithm classified patients as HR or LR with a Balanced Accuracy of 74.5% (p < 0.0001) in the Discovery sample, and 80.2% in the Validation sample. Higher self-esteem, larger social network and use of adaptive coping strategies were the variables most frequently chosen by the algorithm to generate decisions. Correlations between algorithm decision scores, socio-cognitive abilities, and symptom severity were significant (pFDR < 0.05). Conclusions: We identified an accurate, meaningful and generalizable clinical-psychological signature associated with resilience in SCZ. This study delivers relevant information regarding psychological and clinical factors that non-pharmacological interventions could target in schizophrenia.

Clinical and psychological factors associated with resilience in patients with schizophrenia: data from the Italian network for research on psychoses using machine learning

Laura Fusar Poli;
2023-01-01

Abstract

Background: Resilience is defined as the ability to modify thoughts to cope with stressful events. Patients with schizophrenia (SCZ) having higher resilience (HR) levels show less severe symptoms and better real-life functioning. However, the clinical factors contributing to determine resilience levels in patients remain unclear. Thus, based on psychological, historical, clinical and environmental variables, we built a supervised machine learning algorithm to classify patients with HR or lower resilience (LR). Methods: SCZ from the Italian Network for Research on Psychoses (N = 598 in the Discovery sample, N = 298 in the Validation sample) underwent historical, clinical, psychological, environmental and resilience assessments. A Support Vector Machine algorithm (based on 85 variables extracted from the above-mentioned assessments) was built in the Discovery sample, and replicated in the Validation sample, to classify between HR and LR patients, within a nested, Leave-Site-Out Cross-Validation framework. We then investigated whether algorithm decision scores were associated with the cognitive and clinical characteristics of patients. Results: The algorithm classified patients as HR or LR with a Balanced Accuracy of 74.5% (p < 0.0001) in the Discovery sample, and 80.2% in the Validation sample. Higher self-esteem, larger social network and use of adaptive coping strategies were the variables most frequently chosen by the algorithm to generate decisions. Correlations between algorithm decision scores, socio-cognitive abilities, and symptom severity were significant (pFDR < 0.05). Conclusions: We identified an accurate, meaningful and generalizable clinical-psychological signature associated with resilience in SCZ. This study delivers relevant information regarding psychological and clinical factors that non-pharmacological interventions could target in schizophrenia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1495867
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact