l-Aspartate oxidase is the first enzyme in the de novo biosynthesis of pyridinic coenzymes in facultative aerobic organisms. The enzyme is FAD dependent and it shares common features with both the oxidase and the fumarate reductase classes of flavoproteins. In this report we focused our attention on the supersecondary structure of the molecule by means of limited proteolysis studies. Moreover the polymerization state of the protein at different pH and the interactions with NAD and its analogues are described. The results suggest that l-aspartate oxidase is a monomer at pH values lower than 4.5 and a dimer at pH values higher than 6.5. The protein is organized in two major domains connected by a flexible loop located in the 120-140 region. The data obtained by limited proteolysis of the holo and the apo form in the presence and in the absence of substrates (fumarate and menadione), inhibitors (succinate) and NAD allows the proposition that both domains are involved in the binding of the flavin coenzyme. Moreover the data reported in this manuscript suggest that NAD inhibits l-aspartate oxidase activity by competing with the flavin for the binding to the enzyme.

Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis.

MATTEVI, ANDREA;
1999-01-01

Abstract

l-Aspartate oxidase is the first enzyme in the de novo biosynthesis of pyridinic coenzymes in facultative aerobic organisms. The enzyme is FAD dependent and it shares common features with both the oxidase and the fumarate reductase classes of flavoproteins. In this report we focused our attention on the supersecondary structure of the molecule by means of limited proteolysis studies. Moreover the polymerization state of the protein at different pH and the interactions with NAD and its analogues are described. The results suggest that l-aspartate oxidase is a monomer at pH values lower than 4.5 and a dimer at pH values higher than 6.5. The protein is organized in two major domains connected by a flexible loop located in the 120-140 region. The data obtained by limited proteolysis of the holo and the apo form in the presence and in the absence of substrates (fumarate and menadione), inhibitors (succinate) and NAD allows the proposition that both domains are involved in the binding of the flavin coenzyme. Moreover the data reported in this manuscript suggest that NAD inhibits l-aspartate oxidase activity by competing with the flavin for the binding to the enzyme.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact