Introduction: Brain hypometabolism patterns have been previously associated with cognitive decline in Parkinson's disease (PD). Our aim is to evaluate the impact of single-subject fluorodeoxyglucose (FDG)-PET brain hypometabolism on long-term cognitive and motor outcomes in PD. Methods: Forty-nine non-demented PD patients with baseline brain FDG-PET data underwent an extensive clinical follow-up for 8 years. The ability of FDG-PET to predict long-term cognitive and motor progression was evaluated using Cox regression and mixed ANCOVA models. Results: Participants were classified according to FDG-PET pattern in PD with typical (n = 26) and atypical cortical metabolism (n = 23). Patients with atypical brain hypometabolic patterns showed higher incidence of dementia (60% vs 3%; HR = 18.3), hallucinations (56% vs 7%, HR = 7.3) and faster motor decline compared to typical pattern group. Conclusion: This study argues for specific patterns of FDG-PET cortical hypometabolism in PD as a prognostic marker for long term cognitive and motor outcomes at single-subject level.
Atypical brain FDG-PET patterns increase the risk of long-term cognitive and motor progression in Parkinson's disease
Imarisio, Alberto;Pilotto, Andrea;Caminiti, Silvia Paola;Sala, Arianna;
2023-01-01
Abstract
Introduction: Brain hypometabolism patterns have been previously associated with cognitive decline in Parkinson's disease (PD). Our aim is to evaluate the impact of single-subject fluorodeoxyglucose (FDG)-PET brain hypometabolism on long-term cognitive and motor outcomes in PD. Methods: Forty-nine non-demented PD patients with baseline brain FDG-PET data underwent an extensive clinical follow-up for 8 years. The ability of FDG-PET to predict long-term cognitive and motor progression was evaluated using Cox regression and mixed ANCOVA models. Results: Participants were classified according to FDG-PET pattern in PD with typical (n = 26) and atypical cortical metabolism (n = 23). Patients with atypical brain hypometabolic patterns showed higher incidence of dementia (60% vs 3%; HR = 18.3), hallucinations (56% vs 7%, HR = 7.3) and faster motor decline compared to typical pattern group. Conclusion: This study argues for specific patterns of FDG-PET cortical hypometabolism in PD as a prognostic marker for long term cognitive and motor outcomes at single-subject level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.