Introduction: Neuroendocrine transdifferentiation (NED) of prostate cancer (PC) cells is associated with the development of resistance to antiandrogen therapy and poor prognosis in patients with castration-resistant PC (CRPC). Many of the molecular events, involved in NED, appear to be mediated by epigenetic mechanisms. In this study, we evaluated the antitumor activity and epigenetic modulation of 2 epigenetic drugs, such as the demethylating agent 5-aza-2′-deoxycytidine (AZA) and the methyl donor S-adenosylmethionine (SAM), in 2 human CRPC cell lines with NED (DU-145 and PC-3). Methods: The effects of AZA and SAM on cell viability, cell cycle, apoptosis, migration, and genome-wide DNA methylation profiling have been evaluated. Results: Both drugs showed a prominent antitumor activity in DU-145 and PC-3 cells, through perturbation of cell cycle progression, induction of apoptosis, and inhibition of cell migration. AZA and SAM reversed NED in DU-145 and PC-3, respectively. Moreover, AZA treatment modified DNA methylation pattern in DU-145 cells, sustaining a pervasive hypomethylation of the genome, with a relevant effect on several pathways involved in the regulation of cell proliferation, apoptosis, and cell migration, in particular Wnt/β-catenin. Conclusions: A relevant antitumor activity of these epigenetic drugs on CRPC cell lines with NED opens a new scenario in the therapy of this lethal variant of PC.

Role of Epigenetic Therapy in the Modulation of Tumor Growth and Migration in Human Castration-Resistant Prostate Cancer Cells with Neuroendocrine Differentiation

Gentilini D.;
2022-01-01

Abstract

Introduction: Neuroendocrine transdifferentiation (NED) of prostate cancer (PC) cells is associated with the development of resistance to antiandrogen therapy and poor prognosis in patients with castration-resistant PC (CRPC). Many of the molecular events, involved in NED, appear to be mediated by epigenetic mechanisms. In this study, we evaluated the antitumor activity and epigenetic modulation of 2 epigenetic drugs, such as the demethylating agent 5-aza-2′-deoxycytidine (AZA) and the methyl donor S-adenosylmethionine (SAM), in 2 human CRPC cell lines with NED (DU-145 and PC-3). Methods: The effects of AZA and SAM on cell viability, cell cycle, apoptosis, migration, and genome-wide DNA methylation profiling have been evaluated. Results: Both drugs showed a prominent antitumor activity in DU-145 and PC-3 cells, through perturbation of cell cycle progression, induction of apoptosis, and inhibition of cell migration. AZA and SAM reversed NED in DU-145 and PC-3, respectively. Moreover, AZA treatment modified DNA methylation pattern in DU-145 cells, sustaining a pervasive hypomethylation of the genome, with a relevant effect on several pathways involved in the regulation of cell proliferation, apoptosis, and cell migration, in particular Wnt/β-catenin. Conclusions: A relevant antitumor activity of these epigenetic drugs on CRPC cell lines with NED opens a new scenario in the therapy of this lethal variant of PC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1498545
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact