Simultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aβ protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aβ protein oligomerisation and the consequent neurotoxic events. Interestingly, from in vitro studies, analogues 3 and 4, bearing a substituted triazole moiety, emerged as multifunctional agents able to counteract Aβ aggregation, neuroinflammation and oxidative stress. In vivo proof-of-concept evaluations, performed in a Drosophila oxidative stress model, allowed us to identify compound 4 as a promising lead candidate.

Targeting the multifaceted neurotoxicity of Alzheimer's disease by tailored functionalisation of the curcumin scaffold

De Lorenzi E.
Supervision
;
Contardi C.
Formal Analysis
;
Serra M.
Data Curation
;
2023-01-01

Abstract

Simultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aβ protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aβ protein oligomerisation and the consequent neurotoxic events. Interestingly, from in vitro studies, analogues 3 and 4, bearing a substituted triazole moiety, emerged as multifunctional agents able to counteract Aβ aggregation, neuroinflammation and oxidative stress. In vivo proof-of-concept evaluations, performed in a Drosophila oxidative stress model, allowed us to identify compound 4 as a promising lead candidate.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1498775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact