Local continuity is established for locally bounded, weak solutions to a doubly non-linear parabolic equation that models the temperature of a material undergoing a multi-phase transition. The enthalpy, as a maximal monotone graph of the temperature, is allowed to possess several jumps and/or infinite derivatives at the transition temperatures. The effect of the p-Laplacian-type diffusion is also considered. As an application, we demonstrate a continuity result for the saturation in the flow of two immiscible fluids through a porous medium, when irreducible saturation is present.

Continuity of the temperature in a multi-phase transition problem. Part II

Gianazza, Ugo
;
2024-01-01

Abstract

Local continuity is established for locally bounded, weak solutions to a doubly non-linear parabolic equation that models the temperature of a material undergoing a multi-phase transition. The enthalpy, as a maximal monotone graph of the temperature, is allowed to possess several jumps and/or infinite derivatives at the transition temperatures. The effect of the p-Laplacian-type diffusion is also considered. As an application, we demonstrate a continuity result for the saturation in the flow of two immiscible fluids through a porous medium, when irreducible saturation is present.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1499977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact