In this study, a deep learning-based approach is used to address inverse problems involving the inversion of a magnetic field and the identification of the relevant source, given the field data within a specific subdomain. Three different techniques are proposed: the first one is characterized by the use of a conditional variational autoencoder (CVAE) and a convolutional neural network (CNN); the second one employs the CVAE (its decoder, more specifically) and a fully connected deep artificial neural network; while the third one (mainly used as a comparison) uses a CNN directly operating on the available data without the use of the CVAE. These methods are applied to the magnetostatic problem outlined in the TEAM 35 benchmark problem, and a comparative analysis between them is conducted.

A Source Identification Problem in Magnetics Solved by Means of Deep Learning Methods

Di Barba P.;Mognaschi M. E.;
2024-01-01

Abstract

In this study, a deep learning-based approach is used to address inverse problems involving the inversion of a magnetic field and the identification of the relevant source, given the field data within a specific subdomain. Three different techniques are proposed: the first one is characterized by the use of a conditional variational autoencoder (CVAE) and a convolutional neural network (CNN); the second one employs the CVAE (its decoder, more specifically) and a fully connected deep artificial neural network; while the third one (mainly used as a comparison) uses a CNN directly operating on the available data without the use of the CVAE. These methods are applied to the magnetostatic problem outlined in the TEAM 35 benchmark problem, and a comparative analysis between them is conducted.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1501105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact