The adaptability of seed metabolism to different environmental conditions represents a crucial aspect to understand the effects of climate change on plant populations in wild environments. Among the indicators of stress and repair in seeds, tocopherols and malondialdehyde have been related to membrane stability in seed deterioration. Alpine plants constitute an interesting system to understand stress response dynamics because of the relevant climate variations challenging seed viability in alpine environments. This study considered five accessions of Viscaria alpina seeds collected over five years, highlighting significant correlations between environmental parameters such as precipitations and temperature, and several indicators of the oxidative stress response. These provide new insights on how changes in indicators of the seed stress response can reflect annual variations in temperature and precipitations affecting their parental plants, with possible implications on the current understanding of seed persistence in alpine environments threatened by climate change and on the effects of seed storage.

Oxidant and Antioxidant Profiling in Viscaria alpina Seed Populations Following the Temporal Dynamics of an Alpine Climate

Andrea Pagano;Enrico Doria;Andrea Mondoni;Fiona Jane White;Alma Balestrazzi;Anca Macovei
2023-01-01

Abstract

The adaptability of seed metabolism to different environmental conditions represents a crucial aspect to understand the effects of climate change on plant populations in wild environments. Among the indicators of stress and repair in seeds, tocopherols and malondialdehyde have been related to membrane stability in seed deterioration. Alpine plants constitute an interesting system to understand stress response dynamics because of the relevant climate variations challenging seed viability in alpine environments. This study considered five accessions of Viscaria alpina seeds collected over five years, highlighting significant correlations between environmental parameters such as precipitations and temperature, and several indicators of the oxidative stress response. These provide new insights on how changes in indicators of the seed stress response can reflect annual variations in temperature and precipitations affecting their parental plants, with possible implications on the current understanding of seed persistence in alpine environments threatened by climate change and on the effects of seed storage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1502987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact