We study local asymptotics of solutions to fractional elliptic equations at boundary points, under some outer homogeneous Dirichlet boundary condition. Our analysis is based on a blow-up procedure which involves some Almgren type monotonicity formulæ and provides a classification of all possible homogeneity degrees of limiting entire profiles. As a consequence, we establish a strong unique continuation principle from boundary points.

Strong unique continuation and local asymptotics at the boundary for fractional elliptic equations

Felli, Veronica;Vita, Stefano
2022-01-01

Abstract

We study local asymptotics of solutions to fractional elliptic equations at boundary points, under some outer homogeneous Dirichlet boundary condition. Our analysis is based on a blow-up procedure which involves some Almgren type monotonicity formulæ and provides a classification of all possible homogeneity degrees of limiting entire profiles. As a consequence, we establish a strong unique continuation principle from boundary points.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1503329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact