Monitoring dense forest ecosystems, such as the laurel forest in Garajonay National Park, is vital for biodiversity conservation, carbon storage, and ecological balance. This study employs satellite remote sensing technologies to introduce a novel methodology, based on vegetation indices, aiming to assess and protect the health of the forest. Utilizing the Jeffries-Matusita distance and a histogram-based method, optimal indices to map forest degradation, like Wide Dynamic Range Vegetation Index (WDRVI) and Modified Simple Ratio (MSR), were identified among 19 generated indices. The study processed imagery from three satellite sensors (WorldView-2, PlanetScope and Sentinel-2), producing maps distinguishing healthy and degraded areas. The study’s practical significance lies in offering a method to assess the suitability of sensors and indices for effectively mapping forest degradation. This approach aids conservation efforts and provides valuable insights for environmental managers and policymakers, facilitating the implementation of targeted strategies to safeguard Garajonay National Park's unique laurel forest ecosystem. Emphasizing the role of remote sensing in practical vegetation protection endeavors, the study contributes to on-the-ground initiatives, ensuring the preservation and sustainability of the park's rich biodiversity.

Index-based forest degradation mapping using high and medium resolution multispectral sensors

Gamba P.
2024-01-01

Abstract

Monitoring dense forest ecosystems, such as the laurel forest in Garajonay National Park, is vital for biodiversity conservation, carbon storage, and ecological balance. This study employs satellite remote sensing technologies to introduce a novel methodology, based on vegetation indices, aiming to assess and protect the health of the forest. Utilizing the Jeffries-Matusita distance and a histogram-based method, optimal indices to map forest degradation, like Wide Dynamic Range Vegetation Index (WDRVI) and Modified Simple Ratio (MSR), were identified among 19 generated indices. The study processed imagery from three satellite sensors (WorldView-2, PlanetScope and Sentinel-2), producing maps distinguishing healthy and degraded areas. The study’s practical significance lies in offering a method to assess the suitability of sensors and indices for effectively mapping forest degradation. This approach aids conservation efforts and provides valuable insights for environmental managers and policymakers, facilitating the implementation of targeted strategies to safeguard Garajonay National Park's unique laurel forest ecosystem. Emphasizing the role of remote sensing in practical vegetation protection endeavors, the study contributes to on-the-ground initiatives, ensuring the preservation and sustainability of the park's rich biodiversity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1504921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact