Nanoparticles are useful for increasing drug stability, solubility, and availability. The small molecule baicalein inhibits fibrillation, and detoxifies aggregates of α-synuclein (αSN) associated with Parkinson's disease (PD), but it suffers from instability, low solubility and consequent low availability. Here it is demonstrated that incorporation of baicalein into zwitterionic nanoliposomes (NLP-Ba) addresses these problems. NLP-Ba inhibits αSN fibril initiation, elongation, secondary nucleation, and also depolymerizes mature fibrils more effectively than free baicalein and prevents soluble αSN aggregates from seeding new fibrils. Importantly, NLP-Ba perturbs oligomers’ capacity to permeabilize the membrane. The interaction between NLP-Ba and αSN is confirmed by different biophysical techniques. This nanosystem crosses the blood-brain barrier in vitro and is effective against rotenone neurotoxicity in vivo. The effect of NLP-Ba on αSN fibrillation/cytotoxicity is attributed to a combination of free baicalein and empty NLPs. The results indicate a neuroprotective role for NLP-Ba in decreasing αSN pathogenicity in PD and highlight the use of nanoliposomes to mobilize poorly soluble hydrophobic drugs.

Multiple Protective Roles of Nanoliposome-Incorporated Baicalein against Alpha-Synuclein Aggregates

Rezaei-Ghaleh N.;
2021-01-01

Abstract

Nanoparticles are useful for increasing drug stability, solubility, and availability. The small molecule baicalein inhibits fibrillation, and detoxifies aggregates of α-synuclein (αSN) associated with Parkinson's disease (PD), but it suffers from instability, low solubility and consequent low availability. Here it is demonstrated that incorporation of baicalein into zwitterionic nanoliposomes (NLP-Ba) addresses these problems. NLP-Ba inhibits αSN fibril initiation, elongation, secondary nucleation, and also depolymerizes mature fibrils more effectively than free baicalein and prevents soluble αSN aggregates from seeding new fibrils. Importantly, NLP-Ba perturbs oligomers’ capacity to permeabilize the membrane. The interaction between NLP-Ba and αSN is confirmed by different biophysical techniques. This nanosystem crosses the blood-brain barrier in vitro and is effective against rotenone neurotoxicity in vivo. The effect of NLP-Ba on αSN fibrillation/cytotoxicity is attributed to a combination of free baicalein and empty NLPs. The results indicate a neuroprotective role for NLP-Ba in decreasing αSN pathogenicity in PD and highlight the use of nanoliposomes to mobilize poorly soluble hydrophobic drugs.
2021
Inglese
31
7
baicalein; fibrillation; neurotoxicity; Parkinson's disease; zwitterionic nanoliposomes; α-synuclein
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202007765
15
info:eu-repo/semantics/article
262
Aliakbari, F.; Mohammad-Beigi, H.; Abbasi, S.; Rezaei-Ghaleh, N.; Lermyte, F.; Parsafar, S.; Becker, S.; Tafreshi, A. P.; O'Connor, P. B.; Collingwood...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1506347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact