Shape Memory Alloy Hybrid Composites (SMAHCs) hold great promise for different applications. However, the interface between SMAs and the matrix presents challenges due to large strains associated with the martensitic transformations (MTs). Although different strategies have been proven effective in increasing interfacial strength, debonding and its prevention remain unresolved. Therefore, to enable MTs in SMAHCs, this paper proposes a novel solution using a rubber-like elastomeric interface. Pull-out SMAHC specimens were tested at different embedding lengths with and without the elastomeric interface. Specimens with the elastomeric interface showed better performance and stress-strain transfer during MT up to SMA wire breakage. The behaviour of the interface was studied using finite element analysis. A fine-tuning method was proposed for the cohesive zone model parameters. Simulated pull-out tests matched experimental data, revealing the debonding mechanisms. However, results with the elastomer underscored the need to fully represent the underlying physics of the highly deformable interface.

Enhanced interface adhesion in shape memory alloy hybrid composites via an elastomeric interface: An experimental and numerical investigation

Scalet, Giulia;
2024-01-01

Abstract

Shape Memory Alloy Hybrid Composites (SMAHCs) hold great promise for different applications. However, the interface between SMAs and the matrix presents challenges due to large strains associated with the martensitic transformations (MTs). Although different strategies have been proven effective in increasing interfacial strength, debonding and its prevention remain unresolved. Therefore, to enable MTs in SMAHCs, this paper proposes a novel solution using a rubber-like elastomeric interface. Pull-out SMAHC specimens were tested at different embedding lengths with and without the elastomeric interface. Specimens with the elastomeric interface showed better performance and stress-strain transfer during MT up to SMA wire breakage. The behaviour of the interface was studied using finite element analysis. A fine-tuning method was proposed for the cohesive zone model parameters. Simulated pull-out tests matched experimental data, revealing the debonding mechanisms. However, results with the elastomer underscored the need to fully represent the underlying physics of the highly deformable interface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1506596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact