This paper deals with a nonlocal model for a hyperbolic phase field system coupling the standard energy balance equation for temperature with a dynamic for the phase variable: the latter includes an inertial term and a nonlocal convolution-type operator where the family of kernels depends on a small parameter. We rigorously study the asymptotic convergence of the system as the approximating parameter tends to zero and we obtain at the limit the local system with the elliptic laplacian operator acting on the phase variable. Our analysis is based on some asymptotic properties on nonlocal-to-local convergence that have been recently and successfully applied to families of Cahn-Hilliard models.

Nonlocal to Local Convergence of Phase Field Systems with Inertial Term

Colli, Pierluigi;Scarpa, Luca
2024-01-01

Abstract

This paper deals with a nonlocal model for a hyperbolic phase field system coupling the standard energy balance equation for temperature with a dynamic for the phase variable: the latter includes an inertial term and a nonlocal convolution-type operator where the family of kernels depends on a small parameter. We rigorously study the asymptotic convergence of the system as the approximating parameter tends to zero and we obtain at the limit the local system with the elliptic laplacian operator acting on the phase variable. Our analysis is based on some asymptotic properties on nonlocal-to-local convergence that have been recently and successfully applied to families of Cahn-Hilliard models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1507655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact