The Phase-2 upgrades at the High-Luminosity LHC of ATLAS and CMS experiments at CERN will require a new tracker with readout electronics operating in extremely harsh radiation environment (1 Grad), high hit rate (3.5 GHz/cm2) and high data rate readout (5 Gb/s). The RD53 collaboration is a joint effort between the ATLAS and CMS to qualify the chosen 65 nm CMOS technology in high radiation environment and develop the pixel readout chips of both experiments. After a half-scale demonstrator (RD53A) and full scale prototypes of the two ASICs (RD53B-ATLAS and RD53B-CMS), largely used by the two communities to characterize 3D and planar sensors, RD53 developed and submitted to foundry in 2023 the production chips. A general overview of the chip architecture will be described.
RD53 pixel chips for the ATLAS and CMS Phase-2 upgrades at HL-LHC
Ratti L.;
2024-01-01
Abstract
The Phase-2 upgrades at the High-Luminosity LHC of ATLAS and CMS experiments at CERN will require a new tracker with readout electronics operating in extremely harsh radiation environment (1 Grad), high hit rate (3.5 GHz/cm2) and high data rate readout (5 Gb/s). The RD53 collaboration is a joint effort between the ATLAS and CMS to qualify the chosen 65 nm CMOS technology in high radiation environment and develop the pixel readout chips of both experiments. After a half-scale demonstrator (RD53A) and full scale prototypes of the two ASICs (RD53B-ATLAS and RD53B-CMS), largely used by the two communities to characterize 3D and planar sensors, RD53 developed and submitted to foundry in 2023 the production chips. A general overview of the chip architecture will be described.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.