Light-mediated Halogen-Atom Transfer (XAT) has become a significant methodology in contemporary synthesis. Unlike α-aminoalkyl and silyl radicals, ligated boryl radicals (LBRs) have not been extensively explored as halogen atom abstractors. In this study, we introduce NHC-ligated boranes as optimal radical chain carriers for the intermolecular reductive radical hydroalkylation and hydroarylation of electron-deficient olefins by using direct UV-A light irradiation. DFT analysis allowed us to rationalize the critical role of the NHC ligand in facilitating efficient chain propagation.

Photoinduced Intermolecular Radical Hydroalkylation of Olefins via Ligated Boryl Radicals-Mediated Halogen Atom Transfer

Ravelli, Davide;Capaldo, Luca
2024-01-01

Abstract

Light-mediated Halogen-Atom Transfer (XAT) has become a significant methodology in contemporary synthesis. Unlike α-aminoalkyl and silyl radicals, ligated boryl radicals (LBRs) have not been extensively explored as halogen atom abstractors. In this study, we introduce NHC-ligated boranes as optimal radical chain carriers for the intermolecular reductive radical hydroalkylation and hydroarylation of electron-deficient olefins by using direct UV-A light irradiation. DFT analysis allowed us to rationalize the critical role of the NHC ligand in facilitating efficient chain propagation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1508776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact