The simulation of realistic systems plays a crucial role in modern sciences. Complex organs such as the brain can be described by mathematical models to reproduce biological behaviors. In the brain, the hippocampus is a critical region for memory and learning. In the literature, a model to reproduce the memory consolidation mechanism has been proposed. This model exhibits a high degree of biological realism, though it is accompanied by a significant increase in computational complexity. This paper proposes the development of parallel simulation targeting different devices, namely multicore CPUs and GPUs. The experiments highlighted that the biological realism is maintained, together with a significant decrease of the processing times. Finally, the conducted analysis highlights that the GPU is one of the most suitable technologies for this kind of simulation.

Parallel Simulations of the SharpWave-Ripples of the Hippocampus on Multicore CPUs and GPUs

Emanuele Torti;Simone Migliazza;Elisa Marenzi;Giovanni Danese;Francesco Leporati
2024-01-01

Abstract

The simulation of realistic systems plays a crucial role in modern sciences. Complex organs such as the brain can be described by mathematical models to reproduce biological behaviors. In the brain, the hippocampus is a critical region for memory and learning. In the literature, a model to reproduce the memory consolidation mechanism has been proposed. This model exhibits a high degree of biological realism, though it is accompanied by a significant increase in computational complexity. This paper proposes the development of parallel simulation targeting different devices, namely multicore CPUs and GPUs. The experiments highlighted that the biological realism is maintained, together with a significant decrease of the processing times. Finally, the conducted analysis highlights that the GPU is one of the most suitable technologies for this kind of simulation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1508968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact