This article outlines the design and performance of a flue gas condensation system integrated with a biomass combustion plant. The system comprises a biomass plant fuelled by wood chips, generating flue gases. These gases are condensed via a double heat exchanger set-up, extracting water and heat to reduce concentrations of CO, CO2, and NOx while releasing gases at a temperature close to ambient temperature. The 100 kW biomass plant operates steadily, consuming 50 kg of wood chips per hour with fuel energy of 18.98 MJ/kg. Post combustion, the gases exit at 430 degrees C and undergo two-stage cooling. In the first stage, gases are cooled in a high-temperature tube heat exchanger, transferring heat to air. They then enter the second stage, a flue gas/water heat exchanger, recovering sensible and latent thermal energy, which leads to water condensation. Flue gas is discharged at approximately 33 degrees C. Throughout, parameters like the flue gas temperatures, mass flow, fuel consumption, heat carrier temperatures, and water condensation rates were monitored. The test results show that the system can condense water from flue gas at 75 g/min at 22 degrees C while reducing pollutant emissions by approximately 20% for CO2, 19% for CO, 30% for NO, and 26% for NOx.

Design and Performance Analysis of a Small-Scale Prototype Water Condensing System for Biomass Combustion Flue Gas Abatement

Anna Magrini;Daniele Dondi;Dhanalakshmi Vadivel;Marco Cartesegna;
2024-01-01

Abstract

This article outlines the design and performance of a flue gas condensation system integrated with a biomass combustion plant. The system comprises a biomass plant fuelled by wood chips, generating flue gases. These gases are condensed via a double heat exchanger set-up, extracting water and heat to reduce concentrations of CO, CO2, and NOx while releasing gases at a temperature close to ambient temperature. The 100 kW biomass plant operates steadily, consuming 50 kg of wood chips per hour with fuel energy of 18.98 MJ/kg. Post combustion, the gases exit at 430 degrees C and undergo two-stage cooling. In the first stage, gases are cooled in a high-temperature tube heat exchanger, transferring heat to air. They then enter the second stage, a flue gas/water heat exchanger, recovering sensible and latent thermal energy, which leads to water condensation. Flue gas is discharged at approximately 33 degrees C. Throughout, parameters like the flue gas temperatures, mass flow, fuel consumption, heat carrier temperatures, and water condensation rates were monitored. The test results show that the system can condense water from flue gas at 75 g/min at 22 degrees C while reducing pollutant emissions by approximately 20% for CO2, 19% for CO, 30% for NO, and 26% for NOx.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1509936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact