Purpose: Continuous glucose monitoring (CGM) is being increasingly used in clinical practice. The flash glucose monitoring (FGM) and CGM are different systems of interstitial glucose recording. We aimed to determine the agreement between the factory-calibrated FGM FreeStyle Libre (FSL) and the gold-standard CGM Dexcom G4 Platinum (DG4P). Methods: We analyzed data from n = 8 outpatients with type 1 diabetes, who wore the FSL and DG4P for up to 14 days during their habitual life. We aligned FSL and DG4P recordings to obtain paired glucose measures. We calculated correlation coefficients, mean absolute relative difference (MARD), percentages in Clarke error grid areas, time spent in hyperglycaemia, target glycaemia, or hypoglycaemia, as well as glucose variability with both sensors. Comparison with self-monitoring of blood glucose (SMBG) was also performed. Results: Patients varied in terms of age, diabetes duration, and HbA1c (from 5.9 to 9.6 %). In the pooled analysis of 10,020 paired values, there was a good correlation between FSL and DG4P (r2 = 0.76; MARD = 18.1 ± 14.8 %) with wide variability among patients. The MARD was significantly higher during days 11–14 than in days 1–10, and during hypoglycaemia (19 %), than in normoglycaemia (16 %) or hyperglycaemia (13 %). Average glucose profiles and MARD versus SMBG were similar between the two sensors. Time spent in normo-, hyper-, or hypoglycaemia, and indexes of glucose variability was similarly estimated by the two sensors. Conclusions: In outpatients with type 1 diabetes, we found good agreement between the FSL and DG4P. No significant difference was detected in the estimation of clinical diagnostic parameters.
Head-to-head comparison between flash and continuous glucose monitoring systems in outpatients with type 1 diabetes
Ciciliot S.;
2016-01-01
Abstract
Purpose: Continuous glucose monitoring (CGM) is being increasingly used in clinical practice. The flash glucose monitoring (FGM) and CGM are different systems of interstitial glucose recording. We aimed to determine the agreement between the factory-calibrated FGM FreeStyle Libre (FSL) and the gold-standard CGM Dexcom G4 Platinum (DG4P). Methods: We analyzed data from n = 8 outpatients with type 1 diabetes, who wore the FSL and DG4P for up to 14 days during their habitual life. We aligned FSL and DG4P recordings to obtain paired glucose measures. We calculated correlation coefficients, mean absolute relative difference (MARD), percentages in Clarke error grid areas, time spent in hyperglycaemia, target glycaemia, or hypoglycaemia, as well as glucose variability with both sensors. Comparison with self-monitoring of blood glucose (SMBG) was also performed. Results: Patients varied in terms of age, diabetes duration, and HbA1c (from 5.9 to 9.6 %). In the pooled analysis of 10,020 paired values, there was a good correlation between FSL and DG4P (r2 = 0.76; MARD = 18.1 ± 14.8 %) with wide variability among patients. The MARD was significantly higher during days 11–14 than in days 1–10, and during hypoglycaemia (19 %), than in normoglycaemia (16 %) or hyperglycaemia (13 %). Average glucose profiles and MARD versus SMBG were similar between the two sensors. Time spent in normo-, hyper-, or hypoglycaemia, and indexes of glucose variability was similarly estimated by the two sensors. Conclusions: In outpatients with type 1 diabetes, we found good agreement between the FSL and DG4P. No significant difference was detected in the estimation of clinical diagnostic parameters.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.