-On-site analysis of multiple analytes from different classes (such as heavy metals, proteins and small molecules), at the sensitivity required for a selected application, is a hard technological challenge. In this context, optical sensing in miniaturized systems has the largest potential. We present here the design and optimization of a miniaturized optical sensor with multiple channels, capable of multimodal optical detection in each channel, and the proof-of-concept realization of sub-systems providing two complementary detection modes: plasmon enhanced fluorescence and localized surface plasmon resonance. The multichannel (enabling multiplexing) and multimodal optical sensor is designed to have a total size of one inch-square and optimized sensing performance, obtained by combining organic optoelectronic and nanoplasmonic components.
Design of an optical sensor based on organic optoelectronics and nanoplasmonics for multiplex and multimodal detection
Marabelli F.;
2024-01-01
Abstract
-On-site analysis of multiple analytes from different classes (such as heavy metals, proteins and small molecules), at the sensitivity required for a selected application, is a hard technological challenge. In this context, optical sensing in miniaturized systems has the largest potential. We present here the design and optimization of a miniaturized optical sensor with multiple channels, capable of multimodal optical detection in each channel, and the proof-of-concept realization of sub-systems providing two complementary detection modes: plasmon enhanced fluorescence and localized surface plasmon resonance. The multichannel (enabling multiplexing) and multimodal optical sensor is designed to have a total size of one inch-square and optimized sensing performance, obtained by combining organic optoelectronic and nanoplasmonic components.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.